LUO Wei-hua, YANG Ming-qin, SONG Xin, CHENG Dan. A Splitting Preconditioner for Generalized Saddle Point Problems[J]. Journal of Neijiang Normal University, 2014, (8). DOI: 10.13603/j.cnki.51-1621/z.2014.08.002
    Citation: LUO Wei-hua, YANG Ming-qin, SONG Xin, CHENG Dan. A Splitting Preconditioner for Generalized Saddle Point Problems[J]. Journal of Neijiang Normal University, 2014, (8). DOI: 10.13603/j.cnki.51-1621/z.2014.08.002

    A Splitting Preconditioner for Generalized Saddle Point Problems

    • Based on the parameterized Uzawa methods, a new preconditioner for generalized saddle point problems is worked out. An analysis of the pretreated matrix finds that the eigenvalues of the preconditioned matrix will cluster about 0 and 1 when the parameter t → 0. Consequently, on the condition of the proper selection of a parameter, it can ensure a satisfactory convergence when some GMRES iterative methods are used in Krylov subspace. Numerical results of some Navier-Stokes problems are presented to illustrate the actual effect of the preconditioner.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return
      Baidu
      map